Accelerated urinary excretion of methylmercury following administration of its antidote N-acetylcysteine requires Mrp2/Abcc2, the apical multidrug resistance-associated protein.
نویسندگان
چکیده
N-Acetylcysteine (NAC) is a sulfhydryl-containing compound that produces a dramatic acceleration of urinary methylmercury (MeHg) excretion in poisoned mice, but the molecular mechanism for this effect is poorly defined. MeHg readily binds to NAC to form the MeHg-NAC complex, and recent studies indicate that this complex is an excellent substrate for the basolateral organic anion transporter (Oat)-1, Oat1/Slc22a6, thus potentially explaining the uptake from blood into the renal tubular cells. The present study tested the hypothesis that intracellular MeHg is subsequently transported across the apical membrane of the cells into the tubular fluid as a MeHg-NAC complex using the multidrug resistance-associated protein-2 (Mrp2/Abcc2). NAC markedly stimulated urinary [(14)C]MeHg excretion in wild-type Wistar rats, and a second dose of NAC was as effective as the first dose in stimulating MeHg excretion. In contrast with the normal Wistar rats, NAC was much less effective at stimulating urinary MeHg excretion in the Mrp2-deficient (TR-) Wistar rats. The TR- rats excreted only approximately 30% of the MeHg excreted by the wild-type animals. To directly test whether MeHg-NAC is a substrate for Mrp2, studies were carried out in plasma membrane vesicles isolated from livers of TR- and control Wistar rats. Transport of MeHg-NAC was lower in vesicles prepared from TR- rats, whereas transport of MeHg-cysteine was similar in control and TR- rats. These results indicate that Mrp2 is involved in urinary MeHg excretion after NAC administration and suggest that the transported molecule is most likely the MeHg-NAC complex.
منابع مشابه
Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter.
p-Aminohippurate (PAH) is the classical substrate used in the characterization of organic anion transport in renal proximal tubular cells. Although basolateral transporters for PAH uptake from blood into the cell have been well characterized, there is still little knowledge on the apical urinary efflux transporters. The multidrug resistance protein 2 (MRP2/ABCC2) is localized to the apical memb...
متن کاملN-acetylcysteine as an antidote in methylmercury poisoning.
Methylmercury is a ubiquitous environmental pollutant and potent neurotoxin. Treatment of methylmercury poisoning relies almost exclusively on the use of chelating agents to accelerate excretion of the metal. The present study demonstrates that oral administration of N-acetylcysteine (NAC), a widely available and largely nontoxic amino acid derivative, produces a profound acceleration of urinar...
متن کاملImpact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate.
PURPOSE ATP-binding cassette sub-family C member 2 [ABCC2; multidrug resistance-associated protein 2 (MRP2)] and ABCC3 (MRP3) mediate the elimination of toxic compounds, such as drugs and carcinogens, and have a large overlap in substrate specificity. We investigated the roles of Abcc2 and Abcc3 in the elimination of the anticancer drug methotrexate (MTX) and its toxic metabolite 7-hydroxymetho...
متن کاملMolecular characterization of a multidrug resistance-associated protein, Mrp2, from the little skate.
Multidrug resistance protein Mrp2 (symbol Abcc2) in liver plays a significant role in the biliary excretion of organic anionic conjugates. Mutations in human MRP2 result in defects in excretion of conjugated bilirubin and other cholephiles known as the Dubin-Johnson syndrome. Previous studies indicate that transporters with Mrp2-like functions are present in ancient vertebrates. We have now cha...
متن کاملMultidrug resistance proteins 2 and 3 provide alternative routes for hepatic excretion of morphine-glucuronides.
Glucuronidation is a major hepatic detoxification pathway for endogenous and exogenous compounds, resulting in the intracellular formation of polar metabolites that require specialized transporters for elimination. Multidrug resistance proteins (MRPs) are expressed in the liver and can transport glucuronosyl-conjugates. Using morphine as a model aglycone, we demonstrate that morphine-3-glucuron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 322 1 شماره
صفحات -
تاریخ انتشار 2007